
Design Techniques for Cross-Layer Resilience
(Invited Paper)

Nicholas P. Carter, Helia Naeimi, Donald S. Gardner
Intel Corporation

2200 Mission College Blvd., RNB6-61
Santa Clara, California 95054

Email: nicholas.p.carter@intel.com, helia.naeimi@intel.com, d.s.gardner@intel.com

Abstract—Current electronic systems implement reliability
using only a few layers of the system stack, which simplifies the
design of other layers but is becoming increasingly expensive over
time. In contrast, cross-layer resilient systems, which distribute
the responsibility for tolerating errors, device variation, and
aging across the system stack, have the potential to provide
the resilience required to implement reliable, high-performance,
low-power systems in future fabrication processes at significantly
lower cost. These systems can implement less-frequent resilience
tasks in software to save power and chip area, can tune their
reliability guarantees to the needs of applications, and can use the
information available at each level in the system stack to optimize
performance and power consumption. In this paper, we outline
an approach to cross-layer system design that describes resilience
as a set of tasks that systems must perform in order to detect
and tolerate errors and variation. We then present strawman
examples of how this task-based design process could be used to
implement general-purpose computing and SoC systems, drawing
on previous work and identifying key areas for future research.

I. INTRODUCTION

As fabrication technologies advance, increasing rates of
errors [1], device variation [2], and aging [3] motivate the
design of systems in which all of the layers in the system
stack assume that devices and circuits will not always per-
form as designed. When compared to brittle systems, which
assume perfect device fabrication and operation or single-layer
approaches to reliability, these cross-layer resilient systems
have the potential to deliver more-reliable operation, higher
performance, lower cost, and/or lower power consumption by
taking advantage of the information and capabilities available
at each layer in the system stack.

Previous work on resilience has focused on phenomena-
based approaches, in which designers identify the physical
effects (soft errors, NBTI, etc.) that their design needs to
tolerate and develop techniques to address each of those
effects. In this paper, we propose an alternate approach that
divides resilience into a set of five tasks: detection, diag-
nosis, reconfiguration, recovery, and adaptation, which may
be implemented using hardware or software mechanisms at
different levels of the system stack. While the use of these
terms to describe aspects of resilience and reliability is not
new, thinking about resilience as a set of tasks rather than
a set of relatively-independent mechanisms makes cross-layer
designs easier to envision and describe.

Cross-layer resilience is still is still in its infancy, and
was the subject of a 2009 study (www.relxlayer.org) that

Operating System

Applications

Architecture

Circuits

Devices

Error Correction
Mechanisms

Unpredictable
Behavior

Assume
Perfect

Operation

System Stack
Conventional
Single-Layer
Resilience

Cross-Layer
Resilience

Reliable User-Visible
Operation

E
rror D

etection

S
ystem

 D
iagnosis

R
econfiguration,
R

ecovery, and
A

daptation

Application Needs
and Capabilities

Fig. 1. System Stack and Resilience

was funded by the Computing Community Consortium. The
goal of this paper is to inspire research into the techniques
necessary to realize the study’s vision [4] by presenting a
structure for thinking about cross-layer resilience and two case
studies that suggest possible approaches to cross-layer resilient
computing systems and systems-on-chip (SoCs).

II. CROSS-LAYER RESILIENT DESIGN

Current systems concentrate mechanisms for resilience in
the architecture and/or circuit levels of the system stack,
as shown on the left side of Figure 1. While these single-
layer (or few-layer) approaches to resilience simplify the
design of the upper layers in the system stack by allowing
programmers to ignore reliability, they also have significant
drawbacks. To guarantee high reliability, single-level schemes
must typically replicate computations, either across multi-
ple functional units [5][6] or by time-multiplexing a single
functional unit [7][8][9][10]. This replication imposes high
overheads in power, performance, and/or chip area, although
these costs can be reduced somewhat by only replicating the
portions of the computation necessary to guarantee correctness
[11][12][13].

More cost-conscious systems incorporate mechanisms that
address the most common causes of errors, such as error
correcting codes (ECC) in memory or residual arithmetic
to protect datapaths [14]. This approach can be very cost-
effective when system reliability is dominated by a small

number of error sources. However, as fabrication technologies
advance, the total cost of the mechanisms required to handle
increasing rates of multi-bit errors [15][16], temporal perfor-
mance variation [17][18], aging mechanisms such as NBTI
[19][20], and other effects is increasing rapidly.

In contrast, cross-layer resilience schemes divide error and
variation tolerance into a set of tasks, which can be imple-
mented by hardware or software mechanisms at different levels
in the system stack. These resilience tasks can be thought of
as steps that the system follows to handle a particular error or
variation, although they may not occur sequentially. Resilience
tasks are independent of the physical effects that cause errors
and variation, while the mechanisms used to implement a
given task may be specific to individual physical effects (e.g.,
implementing the detection task using separate mechanisms
to detect soft errors, NBTI-induced delay faults, and voltage
droops). To be as consistent as possible with previous work,
we define five resilience tasks, although other task sets are
certainly possible:

1) Detection: Determining that an error has occurred (i.e.,
that some fault has caused one or more bits in the
computation to differ from their correct value).

2) Diagnosis: Characterizing the system’s state to locate
the causes of errors, determine how the system is chang-
ing over time, and predict errors before they occur.

3) Reconfiguration: Changing the state of the system
to prevent an error from recurring and/or to prevent
variation from causing errors.

4) Recovery: Ensuring that an error does not propagate
to user-visible results, for example by rolling back an
application and re-trying one or more failed operations.

5) Adaptation: Re-optimizing the system to provide the
best possible performance/power given the changes to
the system state made by the reconfiguration task.

The right side of Figure 1 illustrates how these tasks might
be distributed across the system stack. In this figure, circles
indicate levels of the stack that participate in each task, while
arrows indicate the direction of information flow. Errors are
detected in the lower levels of the stack, while the operating
system, architecture, and circuits handle diagnosis through
a combination of hardware and software. When an error
occurs, the mechanisms in the circuits and architecture signal
the operating system, which uses the system diagnosis and
information about the application’s error-handling capabilities
to determine how to best respond to the error.

This approach has a number of advantages over systems
that concentrate reliability in only a few layers in the stack.
Cross-layer resilient systems can move less-frequent resilience
tasks into software to reduce area and power overhead, either
during system design or at run-time. They can also provide
configurable reliability to efficiently match the needs of a
given system or application by activating or de-activating
reliability mechanisms based on the observed error rate, the
reliability required by the application, and the sensitivity of a
computation to errors. Finally, cross-layer resilient systems can

take advantage of a wider scope of information when deciding
how to handle an error or variation, allowing them to make
more globally-optimal decisions than systems with less scope.

III. GENERAL-PURPOSE COMPUTING SYSTEMS

Figure 2 illustrates an example of how a cross-layer resilient
general-purpose computing system (laptop, workstation, etc.)
might be implemented. For the purposes of this discussion, we
assume that the system is required to be backward-compatible
with older software, and thus discuss scenarios where ap-
plications both are and are not involved in resilience. As
shown in the figure, the computing system’s hardware consists
of a many-core CPU and off-chip DRAM. The operating
system incorporates four software sub-systems that contribute
to resiliency: an error handler routine, a resource map, which
describes the current state of the system, a hardware configu-
ration routine that controls the system’s hardware, and a task
scheduler, which takes the information in the resource map
into account when scheduling tasks.

A. Detection

When applications are not involved in resilience, errors are
detected at run-time by a set of low-cost hardware mecha-
nisms, such as ECC codes on memories and parity/residue
codes on computations. When an error is detected, the hard-
ware signals an error handler in the operating system, which
directs the recovery, reconfiguration, and adaptation tasks.

Resilience-aware software can significantly improve error
detection rates and/or reduce the amount of hardware required
to detect errors. Algorithmically, it is possible to check the
results of many computations in significantly less time than
is required for the computation itself, although exploiting this
behavior typically requires programmers to invest significant
effort. Alternatively, some algorithms, such as matrix oper-
ations, can be modified to operate on data structures that
incorporate checksums or other redundancy, allowing them to
detect and/or correct errors [21].

Compiler-based techniques can detect many errors in soft-
ware by observing common error symptoms or violations
of invariants [22][23], and can insert redundant instructions
to detect errors [24][25][26]. Combining a resilience-aware
compiler with appropriate hardware support can also effec-
tively detect control-flow errors, such as branches taking the
wrong path, which can be hard to detect in hardware [27]
[28][29][30][31].

B. Diagnosis

In a cross-layer resilient system, error and system diagnosis
are performed by a combination of hardware and software
mechanisms. Temperature and supply voltage sensors can
provide valuable information about the short-term state of the
system, while delay sensors on logic paths [32][17][18], diag-
nostic circuits [20], and periodic hardware or software self-test
[33][34][35] can help to diagnose longer-term variation and
aging. Regardless of the set of diagnosis mechanisms a system
implements, their outputs are sent to the OS and used to update

OS

Applications

Core

D
R

A
M

L2 Cache
CPU

Network

Cores

L1 Cache

Reg. File

ALU

Error Handler

SchedulerHardware
Configuration

Resource Map

Er
ro

r D
et

ec
te

d

Rollback,
Retry

Reliability
Needs

Error-Handling
Capabilities

Invoke Error
Handlers

ECC,
Redundant

Rows

Error Detection Logic

H
ar

dw
ar

e
 S

of
tw

ar
e

C
on

fig
ur

e,
 D

is
ab

le
C

on
fig

ur
e,

 D
is

ab
le

Clock Rate,
Vdd,

Disable Units

Sy
st

em
 S

ta
te

Fig. 2. Cross-Layer Resilient Computer System

its resource map with information on which units in the system
are operating correctly and allowable clock rate/supply voltage
combinations for each unit. System diagnosis can also help
predict permanent errors before they occur by noting changes
in transient fault rates and/or transistor behavior [36].

Because diagnosis is intimately tied to the system’s hard-
ware, it is difficult for application-level software to contribute
significantly to this task in general-purpose computing sys-
tems. Single-purpose or embedded systems might choose to
integrate the software-based test techniques mentioned above
into applications to reduce the amount of system software
they require, and applications that incorporate error detection
techniques can inform the OS of the number of errors they
detect to help it diagnose slow-onset errors.

C. Reconfiguration

There are two aspects to reconfiguration in a cross-layer
resilient system: selecting a set of resilience mechanisms to
use that provide sufficient reliability while maximizing perfor-
mance/Watt, and adjusting the operating points and capabilities
of different hardware units in response to faults, aging, and
variation. Resilience-aware applications can contribute signif-
icantly to the first aspect of reconfiguration by informing the
operating system of their capabilities, allowing it to disable
hardware mechanisms that are not needed. Even when ex-
ecuting resilience-unaware applications, there is potential to
select resilience mechanisms based on the system’s needs, for
example by selecting the amount of error-correction used in
the memory or registers based on the observed error rate [37].

Techniques to reconfigure a system to account for faulty or
aging hardware vary significantly with the type of hardware
being reconfigured. The regular structure of memory arrays
makes it possible to disable small regions of an array in
response to faults [38]. Network techniques to tolerate failures
are relatively well-studied, and efforts are exploring ways to
apply these techniques to on-chip networks [39].

Reconfiguring execution resources involves trade-offs be-
tween the overhead of the reconfiguration mechanisms and
the amount of hardware a given fault/variation can affect.
Given the consequences of disabling an entire core in current-
generation chips, a number of efforts have explored techniques
to tolerate faults in execution units by exploiting redundant
hardware in superscalar cores [40][41], combining multiple
faulty cores into a single “virtual” core [42] or by relocating
tasks if they try to use a faulty unit on a given core [43].
As the number of cores per chip increases, it may become
more attractive to treat cores as atomic units, adjusting their
clock frequency and supply voltage and/or disabling them in
response to faults as long as the CPU provides mechanisms
to isolate faulty cores from the rest of the system [44] and
migrate tasks to healthy cores [45].

Like diagnosis, reconfiguration is a sufficiently hardware-
specific task that it is difficult for applications to contribute
to reconfiguration, although compiler-based reconfiguration
schemes that replace instructions that require faulty hardware
with software emulation [46] have been proposed.

D. Recovery

Error recovery can benefit significantly from a multi-layer
approach, as single-layer recovery techniques, such as triple
modular redundancy or application checkpointing [47], have
very high costs. Much of the difficulty in error recovery comes
from the wide variance in the delay between the time when a
fault occurs and the time that the resulting error(s) are detected.
When errors are detected quickly, they have little ability to
impact state, and low-overhead recovery techniques, such as
squashing instructions in the pipeline, are possible.

However, some errors, such as network errors and multi-
bit memory errors, are inherently difficult to detect quickly
and therefore require checkpointing and rollback or other
more-powerful error recovery techniques, which are still very

much an open area of research. A number of projects have
investigated techniques that leverage the redundant storage
of data in cache hierarchies to provide low-overhead check-
pointing [48][49][50]. While they can significantly reduce
checkpointing overhead, these techniques have limited ability
to guarantee that a checkpoint will be kept alive for a specific
number of cycles, because movement of data into and out of
the caches is determined by the application’s memory accesses.

Integrating applications into the recovery task has the po-
tential to greatly reduce recovery costs by only checkpointing
the data that is necessary to roll back the application. Simply
having the application determine when checkpoints should be
taken can greatly reduce checkpointing overhead [47], while
applications that provide their own checkpointing code can see
even greater improvements [51]. A more general approach to
application-level redundancy might involve the use of side-
effect-free programming styles, in which functions are not
allowed to modify any data other than their return values,
making it possible to re-execute a function if an error occurs.

E. Adaptation

The adaptation task is responsible for deciding how to
allocate tasks and power to the different units in the system
in order to maximize overall performance without exceeding
the power budget or other constraints. In our strawman system,
the operating system handles adaptation, using the output from
the diagnosis task and its knowledge of which applications are
running to set the clock rate and supply voltage of each unit
in the CPU and to determine the mapping of tasks to units.

At the application level, many of the same techniques
used in implementing high-performance parallel programs also
increase an application’s ability to adapt to changing hard-
ware. For example, dynamic load-balancing techniques can
tolerate variations in thread run-time caused by either varying
amounts of work in each sub-task or by cores operating at
different clock rates. Similarly, applications that can increase
or decrease the number of threads they use can adapt to
changes in the number of cores available to them, regardless
of whether those changes are caused by hardware faults or by
other applications starting or stopping.

One challenge in adaptation is that it is currently very diffi-
cult for the system to predict how an application’s performance
will scale with parallelism, making it hard to decide whether
it would be better to run the application on a small number
of high-frequency cores or on a larger number of lower-
frequency cores. A cross-layer system that provided an API
for applications to pass predictions about their performance
scaling to the operating system could significantly improve
the OS’ ability to allocate resources.

IV. SYSTEM-ON-CHIP DESIGN

As the complexity of integrated circuits increases, more
and more designers are using system-on-chip approaches to
reduce design effort by re-using intellectual property (IP)
blocks across multiple designs. While the task-based approach
to resilience we propose applies well to SoC design, SoC

designs have additional challenges and opportunities that are
not present in the more-custom design techniques used in
microprocessors. In this section, we outline these additional
challenges and opportunities, and suggest some approaches to
leverage the opportunities to overcome the challenges.

A. SoC Design Challenges and Opportunities

1) Challenge: Validation and Test: Systems-on-chip pose
significant validation and test challenges. While validating
each IP block at its design time is similar to conventional
chip design, validating the entire SoC system is more difficult
because the designer does not (and should not) have access
to the internals of each IP block. This makes it harder to
validate all of the corner cases in a design, leading to increased
bug escapes. Fabrication test poses similar difficulties due to
limited accessibility and visibility. Cross-layer resilience can
help systems tolerate bugs by providing mechanisms to detect
errors at runtime, retry computations when an error occurs
due to a rare sequence of events, and reconfigure themselves
to avoid exercising faulty circuitry.

2) Challenge: Varying Reliability Requirements: A given IP
block will be used in multiple systems, which may have dif-
ferent reliability requirements. When a single-level approach
to resilience is used, block designers are forced to choose
between over-designing blocks to meet the needs of the most
demanding SoCs or designing for efficiency in the “average”
case and potentially not meeting the needs of highly-reliable
SoCs. A cross-layer approach to resilience can allow IP blocks
to meet the needs of a wide range of SoCs. For example,
an IP block might provide a minimal set of error detection
and retry mechanisms. SoC designers could then implement
mechanisms for diagnosis, recovery, reconfiguration, and adap-
tation at higher levels in the system stack in order to efficiently
provide the reliability required by each system.

3) Opportunity: Standard Resilient IP interface: The SoC
industry currently uses a number of standardized interfaces to
IP blocks that reduce system design time by allowing designers
to implement one protocol for communication between the IP
blocks in their design. A standardized protocol for cross-layer
resilient SoCs would greatly simplify design by identifying
the key information and capabilities that need to cross the
IP-system boundary in order to provide reliability. Such an
interface would need to incorporate three key features: a mech-
anism to isolate defective blocks from the rest of the system,
protocols for inter-block communication about resilience, and
signals to make resilience visible to the upper layers in the
system stack. In the next section, we discuss how such a
protocol could be used to design SoCs in more detail.

B. Cross-Layer Resilience for SoCs

Figure 3 shows an example system stack for resilient SoC
design. The key differences between this stack and the one
shown in Figure 1 are the division of the architecture layer
into SoC architecture and IP block architecture layers and the
insertion of the resilient IP interface between them.

Operating System

Applications

SoC Architecture

Circuits

Devices

E
rror D

etection

S
ystem

 D
iagnosis

R
econfiguration,
R

ecovery, and
A

daptation

Application Needs
and Capabilities

IP Block Architecture

System Stack Resilience TasksResilient IP Interface

Defective block
isolation

Inter-block
communication
protocols for
resilience

Makes resilience
visible to upper
levels in the stack

Fig. 3. Cross-Layer Resilient System-on-Chip

1) Detection: The standardized resilient IP interface will
play two roles in error detection. First, it must provide mech-
anisms to detect and correct errors in inter-block communica-
tion, and these mechanisms should be configurable to allow
different reliability/cost trade-offs, such as variable-strength
ECC schemes, either by synthesizing different variants of the
interface or perhaps by run-time configuration. Second, the IP
interface should allow the system to configure or disable the
error-detection mechanisms in each IP block if they are not
required for a particular application.

2) Diagnosis: As with the general-purpose computing ex-
ample, diagnosis in SoCs will be distributed across the system
stack. The resilient IP interface will provide the cross-layer
visibility required to allow higher layers in the stack to control
and direct diagnosis.

3) Recovery: For recovery, the IP interface needs to guar-
antee data integrity between the IP blocks, as mentioned in the
discussion of detection. It must also provide a protocol for re-
trying failed computations, such as a requirement that blocks
buffer any requests they send to other blocks until completion
of the request is acknowledged.

4) Reconfiguration and Adaptation: The resilient IP in-
terface is also the key to reconfiguration and adaptation in
our scheme. It should provide protocols to inform an IP
block when a permanent error in the block has been detected
and invoke any self-reconfiguration mechanisms the block
may provide to handle the error. The interface must also
provide mechanisms to disable and isolate defective IP blocks,
allowing the system to continue (potentially with degraded
performance) in spite of the defect, perhaps by performing
the IP block’s functions in software.

V. CONCLUSION

Increasing error, variation, and aging rates in semiconductor
systems are making it more and more costly to tolerate all of
the possible non-ideal device behaviors in one or two layers
of the system stack. Distributing resilience and reliability
across the system stack can improve performance and reduce
power and area costs by taking advantage of the strengths
of each layer and exploiting the characteristics of individual
applications. We have described an approach to cross-layer

resilient system design that divides resilience into five tasks:
detection, diagnosis, reconfiguration, recovery, and adaptation.

To illustrate our model of cross-layer resilient design, we
have presented a strawman design for a cross-layer resilient
computing system and have shown how it could build on
previous work. We have also presented a discussion of cross-
layer resilient systems-on-chip, highlighting the key differ-
ences between general-purpose systems and SoCs as they
affect resilience. It is our hope that these examples will both
support our claims and motivate further research on cross-layer
resilient design.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0637190 to the
Computing Research Association. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the Computing Research Association, the National Science
Foundation, or the Intel Corporation. The authors would like
to thank Subhasish Mitra for his many comments on early
drafts of this paper.

REFERENCES

[1] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in Proceedings of the 11th International
Symposium on High-Performance Computer Architecture. IEEE Com-
puter Society, 2005, pp. 243–247.

[2] S. Borkar, “Designing reliable systems from unreliable components:
the challenges of transistor variability and degradation,” Micro, IEEE,
vol. 25, no. 6, pp. 10–16, 2005.

[3] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra, “Circuit failure
prediction and its application to transistor aging,” in Proceedings of the
25th IEEE VLSI Test Symmposium. IEEE Computer Society, 2007, pp.
277–286.

[4] A. DeHon, H. M. Quinn, and N. P. Carter, “Vision for cross-layer
optimization to address the dual challenges of energy and reliability,” in
Design and Test in Europe (DATE), 2010.

[5] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to
improve computer reliability,” IBM Journal of Research and Develop-
ment, vol. 6, no. 2, pp. 200–209, 1962.

[6] Y. C. Yeh, “Triple-triple redundant 777 primary flight computer,” in
Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE,
vol. 1, 1996, pp. 293–307 vol.1.

[7] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” SIGARCH Comput. Archit. News, vol. 28,
no. 2, pp. 25–36, 2000.

[8] J. Ray, J. C. Hoe, and B. Falsafi, “Dual use of superscalar datapath for
transient-fault detection and recovery,” in Proceedings of the 34th annual
ACM/IEEE International Symposium on Microarchitecture. Austin,
Texas: IEEE Computer Society, 2001, pp. 214–224.

[9] E. Rotenberg, “Ar-SMT: A microarchitectural approach to fault tolerance
in microprocessors,” in Proceedings of the Twenty-Ninth Annual Inter-
national Symposium on Fault-Tolerant Computing. IEEE Computer
Society, 1999.

[10] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” SIGARCH Comput.
Archit. News, vol. 30, no. 2, pp. 99–110, 2002.

[11] T. M. Austin, “DIVA: a reliable substrate for deep submicron mi-
croarchitecture design,” in Proceedings of the 32nd annual ACM/IEEE
International Symposium on Microarchitecture. Haifa, Israel: IEEE
Computer Society, 1999, pp. 196–207.

[12] N. Madan and R. Balasubramonian, “Power efficient approaches to
redundant multithreading,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 18, no. 8, pp. 1066–1079, 2007.

[13] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi, “Power-
efficient error tolerance in chip multiprocessors,” Micro, IEEE, vol. 25,
no. 6, pp. 60–70, 2005.

[14] A. Avizienis, “Arithmetic error codes: Cost and effectiveness studies
for application in digital system design,” IEEE Trans. Comput., vol. 20,
no. 11, pp. 1322–1331, 1971.

[15] N. Seifert, P. Slankard, M. Kirsch, B. Narasimham, V. Zia, C. Brookre-
son, A. Vo, S. Mitra, B. Gill, and J. Maiz, “Radiation-induced soft
error rates of advanced CMOS bulk devices,” in Reliability Physics
Symposium Proceedings, 2006. 44th Annual., IEEE International, 2006,
pp. 217–225.

[16] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit error
tolerant caches using two-dimensional error coding,” in Proceedings of
the 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture. IEEE Computer Society, 2007, pp. 197–209.

[17] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical
silicon matter with Razor,” Computer, vol. 37, no. 3, pp. 57–65, 2004.

[18] K. Bowman, J. Tschanz, C. Wilkerson, S.-L. Lu, T. Karnik, V. De,
and S. Borkar, “Circuit techniques for dynamic variation tolerance,” in
Proceedings of the 46th Annual Design Automation Conference. San
Francisco, California: ACM, 2009, pp. 4–7.

[19] J. Abella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-aware
processor,” in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2007, pp.
85–96.

[20] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online
wearout detection,” in Proceedings of the 40th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Computer Society,
2007, pp. 109–122.

[21] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Comput., vol. 33, no. 6, pp. 518–528,
1984.

[22] N. Wang and S. Patel, “ReStore: Symptom based soft error detection in
microprocessors,” in Proceedings of the 2005 International Conference
on Dependable Systems and Networks. IEEE Computer Society, 2005,
pp. 30–39.

[23] S. K. Sahoo, L. Man-Lap, P. Ramachandran, S. V. Adve, V. S. Adve,
and Z. Yuanyuan, “Using likely program invariants to detect hardware
errors,” in Proceedings of the 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC (DSN 2008),
2008, pp. 70–79.

[24] N. Oh, S. Mitra, and E. McCluskey, “ED4I: error detection by diverse
data and duplicated instructions,” Computers, IEEE Transactions on,
vol. 51, no. 2, pp. 180–199, Feb 2002.

[25] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” Reliability, IEEE Transactions
on, vol. 51, no. 1, pp. 63–75, Mar 2002.

[26] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee, “Software-controlled fault tolerance,” ACM Trans. Archit.
Code Optim., vol. 2, no. 4, pp. 366–396, 2005.

[27] D. Lu, “Watchdog processors and structural integrity checking,” Com-
puters, IEEE Transactions on, vol. C-31, no. 7, pp. 681–685, July 1982.

[28] A. Meixner, M. E. Bauer, and D. Sorin, “Argus: Low-cost, comprehen-
sive error detection in simple cores,” in Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2007, pp. 210–222.

[29] R. Venkatasubramanian, J. P. Hayes, and B. T. Murray, “Low-cost on-
line fault detection using control flow assertions,” in On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE, 2003, pp. 137–143.

[30] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“Soft-error detection using control flow assertions,” in Defect and Fault
Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE International
Symposium on, 2003, pp. 581–588.

[31] K. Pattabiraman, Z. Kalbarczyk, and R. K. Iyer, “Automated derivation
of application-aware error detectors using static analysis,” in Proceed-
ings of the 13th IEEE International On-Line Testing Symposium. IEEE
Computer Society, 2007, pp. 211–216.

[32] P. Franco and E. McCluskey, “On-line delay testing of digital circuits,”
in VLSI Test Symposium, 1994. Proceedings., 12th IEEE, Apr 1994, pp.
167–173.

[33] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T. Austin,
“Ultra low-cost defect protection for microprocessor pipelines,” in
Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems. San
Jose, California, USA: ACM, 2006, pp. 73–82.

[34] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco, “Software-
based online detection of hardware defects: Mechanisms, architectural
support, and evaluation,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Soci-
ety, 2007, pp. 97–108.

[35] S.-B. Park and S. Mitra, “IFRA: instruction footprint recording and anal-
ysis for post-silicon bug localization in processors,” in Proceedings of
the 45th annual Design Automation Conference. Anaheim, California:
ACM, 2008, pp. 373–378.

[36] Y. Li, Y. M. Kim, E. Mintarno, D. S. Gardner, and S. Mitra, “Overcom-
ing early-life failure and aging for robust systems,” Design & Test of
Computers, IEEE, vol. 26, no. 6, pp. 28–39, 2009.

[37] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S.
Kim, N. R. Shanbhag, and S. J. Patel, “Sequential element design with
built-in soft error resilience,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 14, no. 12, pp. 1368–1378, 2006.

[38] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” SIGARCH Comput. Archit. News (ISCA 2008), vol. 36, no. 3,
pp. 203–214, 2008.

[39] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D. Sylvester,
“Vicis: a reliable network for unreliable silicon,” in Proceedings of the
46th Annual Design Automation Conference. San Francisco, California:
ACM, 2009, pp. 812–817.

[40] E. Schuchman and T. N. Vijaykumar, “Rescue: A microarchitecture for
testability and defect tolerance,” in Proceedings of the 32nd annual
International Symposium on Computer Architecture. IEEE Computer
Society, 2005, pp. 160–171.

[41] F. A. Bower, D. J. Sorin, and S. Ozev, “A mechanism for online diagnosis
of hard faults in microprocessors,” in Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture. Barcelona,
Spain: IEEE Computer Society, 2005, pp. 197–208.

[42] B. F. Romanescu and D. J. Sorin, “Core cannibalization architecture:
improving lifetime chip performance for multicore processors in the
presence of hard faults,” in Proceedings of the 2008 International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
ACM, 2008, pp. 43–51.

[43] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural
core salvaging in a multi-core processor for hard-error tolerance,” in
Proceedings of the 36th annual International Symposium on Computer
Architecture. Austin, TX, USA: ACM, 2009, pp. 93–104.

[44] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Con-
figurable isolation: building high availability systems with commodity
multi-core processors,” SIGARCH Comput. Archit. News (ISCA 2007),
vol. 35, no. 2, pp. 470–481, 2007.

[45] K. Reick, P. Sanda, S. Swaney, J. Kellington, M. Mack, M. Floyd, and
D. Henderson, “Fault-tolerant design of the IBM Power6 microproces-
sor,” Micro, IEEE, vol. 28, no. 2, pp. 30–38, March-April 2008.

[46] A. Meixner and D. J. Sorin, “Detouring: Translating software to cir-
cumvent hard faults in simple cores,” in Proceedings of the 2008 IEEE
International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN 2008), 2008, pp. 80–89.

[47] J. S. Planck, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under UNIX,” in Usenix, New Orleans, LA, 1995, pp.
213–223.

[48] D. Hunt and P. Marinos, “General-purpose cache-aided rollback error
recovery (CARER) technique,” in 17th International Symposium on
Fault-Tolerant Computing Systems. IEEE CS Press, 1987, pp. 170–
175.

[49] M. Prvulovic, Z. Zheng, and J. Torrellas, “ReVive: cost-effective ar-
chitectural support for rollback recovery in shared-memory multipro-
cessors,” in Computer Architecture, 2002. Proceedings. 29th Annual
International Symposium on, 2002, pp. 111–122.

[50] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “SafetyNet:
improving the availability of shared memory multiprocessors with global
checkpoint/recovery,” in Computer Architecture, 2002. Proceedings.
29th Annual International Symposium on, 2002, pp. 123–134.

[51] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J. A. Gunnels,
and F. H. Streitz, “Extending stability beyond CPU millennium: a
micron-scale atomistic simulation of Kelvin-Helmholtz instability,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing.
Reno, Nevada: ACM, 2007, pp. 1–11.

