
CCC: Visioning Proposal December 2008

System-level, Cross-layer Cooperation to Achieve
Predictable Systems from Unpredictable Components

In coming years, a number of factors will lead to a significant shift in the way computer sys-
tems manage reliability, variation, and fabrication. Currently, computer systems assume perfect
device fabrication and operation. For high-reliability systems, the usual methods of increasing sys-
tem reliability involve ECC coding on memories and triple-modular-redundancy (TMR) of critical
components. These brute force methods are able to increase system reliability when silicon fabri-
cation processes are able to deliver high individual device reliability and low variation. However,
as the critical dimensions of devices, such as transistors and wires, used to implement computer
systems shrink to only a few nanometers, rates of transient faults, permanent faults, and variation
between devices on the same die are expected to increase to the point where this approach will no
longer be practical.

Instead, computer systems will need to adopt a model in which each layer in the abstraction
hierarchy — applications, O/S, architecture, circuits — is prepared for the layer below to transmit
bad data and in which all of the layers in the hierarchy cooperate to deliver correct operation in
spite of faults, variations, and other effects.

This shift to a multi-level approach to resilience is further motivated by trends in fabrication
processes where device manufacturing is increasingly limited by power consumption instead of
device density, and by trends in computer architecture where designs with large numbers of inde-
pendent execution resources, such as cores and reconfigurable units, are becoming more common.
The need to decrease system power consumption makes it critical that schemes to tolerate errors
and variation consume as little power as possible during error-free computation cycles. Diagnostics
resources, error-correction facilities, and spare resources can sit idle until needed. Repair software
in the O/S can be triggered to manage the repair, perhaps using distinct execution resources from
those where the error was detected.

Architectures where the size of an independent execution resource is small compared to the
total chip size offer two distinct opportunities that do not exist in current architectures:
1. We can use a few independent execution resources on diagnostics and reliability management

without significantly impacting performance or energy.
2. We can spare entire execution resources.

Moving to the multi-level model of resilience that we envision will require substantial changes
in the way engineers design and build systems. These changes reformulate the guarantees and
responsibilities of each layer in the system stack and redefine the mechanisms by which each layer
in the stack can communicate with the other layers to (1) inform them of its capabilities and needs,
(2) provide information about the state of the system, and (3) respond to changes in system state.
In this proposal, we outline a program of workshops that will crystallize this vision and identify the
new science and engineering disciplines needed to overcome these challenges. The output of these
workshops will be a draft call for proposals for a government-funded research program in the area
of multi-level resilience, which we will present to program managers at the NSF and other agencies
to solicit support for this critical research area.

1



CCC: Visioning Proposal December 2008

1 Problem Statement
Our modern world is increasingly mediated and controlled by computing devices, including our
critical infrastructure, our communications, our automobiles, our buildings, and our medical de-
vices. This situation has lead to a global dependence on global positioning satellite systems
to provide precision-navigation for commercial and military aircrafts, on high-availability, high-
reliability computing systems for the financial and utility infrastructure, and on drive-by-wire tech-
nology to increase the safety of our transit systems.

Ubiquitous, inexpensive computation enables these high levels of sophistication and automation
that enhance our lives and productivity. Much of the increasing computational power and decreas-
ing costs that facilitate ubiquitous computation is driven by Moore’s law, which leads manufacturers
to aggressively shrink the feature size of transistors, storage nodes, and wires (collectively termed
as devices). When these devices were composed from very large numbers of atoms and charge was
stored in large numbers of electrons, the statistical effects governing the placement of individual
atoms and electrons would normalize, making device behavior predictable and stable. However, as
feature sizes scale to tens of atoms across, the statistical nature of individual atoms, dopants, and
electrons is both sparse and unnormalized, leading to elements that vary widely across an entire
integrated circuit and that are more susceptible to contaminants. These situations have given rise to
several distinct effects including:
• transient errors from radiation [6, 4, 16] and noise fluctuations [7, 14, 13, 8],
• process variation and permanent defects from manufacturing [3, 1],
• compound reliability problems caused by the presence of temperature and power fluctuations

on top of other reliability problems, and
• fragile devices with shortened lifetimes [3, 1].

Many of these problems are already affecting critical infrastructure, as observed in neutron upsets
to avionics [10] and upsets in unprotected caches. Since the reliability of many of these computing
systems is already below an acceptable level, further decreases in the reliability due to scaling
issues cannot be feasibly withstood.

Because we have traditionally been able to address these problems at the manufacturing and
device level, microarchitecture, architecture, system and application designers have been able to
reasonably expect components that are free of defects and transient failures. As a result, only
systems for harsh environments and life-critical systems have required higher-level designers to
pay attention to failure. Since these applications have traditionally been associated with small
markets where the computational component only makes up a small portion of the system cost,
these systems have been able to employ brute-force, high-overhead reliability techniques, such as
triple modular redundancy.

However, as computational control moves into the mainstream, significant fractions of the cost
of products migrate into computerized automation. Combined with the fact that manufacturing can
no longer hide device-level variation and noise effects, efficient mitigation of these effects requires
attention from layers at the circuit, microarchitecture, architecture, system, and application levels of
the system stack. Designers at these higher levels must expect to operate in a new world where:
• Fabrication will be imperfect and some portion of the computational and memory devices on a

chip will be unusable.
• Lifetime variability of parameters and usability will cause individual devices to wear out in less

time than the desired operational lifetime of the component.

2



CCC: Visioning Proposal December 2008

• Conservative margining against variation will be too costly in terms of delay or energy.
• Transient errors in computational and memory devices will make reliable computation impos-

sible for all ICs and systems without mitigation, even high-volume consumer products.
With these expectations, large components and systems will need to tolerate defective or widely
varying devices and faults while maintaining high-reliability guarantees. Furthermore, all designs
must be jointly optimized in an energy-area-delay-reliability space so that the overhead to mitigate
the increased noise effects does not negate the improvements in density, delay, and energy offered
by scaling.

2 Motivational multi-level example: DRAM
Parts of today’s computing systems do tolerate imperfect manufacturing and transient errors. No-
tably, both our communication links and our bulk storage (e.g., DRAM, Flash, hard disks, compact
discs) operate despite the fact that individual bits may be corrupted during transmission or storage.
This mitigation does not incur integer factors of overhead through coordination and cooperation
across different levels of the memory or communication system design.

For example, we have long accepted that DRAM cells may not yield and that even good DRAM
cells could change their value (e.g. be upset by ionizing radiation). Consequently, modern memory
systems employ a combination of the following techniques:
• differential reliability—to achieve the high density of tiny memory cells while maintaining high

reliability and yield for non-repairable control and error-correction circuitry
• device level hardening of memory bits—to contain the failure rate of individual memory bits
• ability to map out bad memory regions—to avoid defective or unreliable regions of the chip

(e.g. row and column sparing for defects)
• redundancy in the form of ECC—to allow efficient error detection and correction
• periodic scrubbing—to prevent error accumulation

If we insisted that we solve the memory reliability problem at the device level so that memory bits
never fail, we would be forced to build much larger memory cells by employing larger feature sizes,
more transistors, or dual interlocked storage cells that store millions of electrons to guard against
almost all ionizing particles. Instead, we code the data at the next level in the hierarchy so we can
detect and correct failures. A modern Hamming ECC for memory adds 8 bits to each 64-bit word.
For an increased overhead of 12.5%, any two errors in a word are detected and any single error
corrected. The result is a DRAM device that can provide a net reduction in area per application
data bit.

Furthermore, memory errors accumulate over time. If we demanded that our error correction
code handle all errors accumulated in each memory word over the months or years that an applica-
tion is in operation, we would need a code with greater redundancy and greater overhead. Instead,
we scrub the data periodically at higher levels in the system to prevent the accumulation of errors
[11, 9]. Even if we had to perform one scrub cycle every 1000 real memory cycles, we would
only spend 0.1% of our memory bandwidth on overhead for scrubbing. This is less overhead than
changing to a larger ECC code (e.g. 82-bits to correct 2 errors in a 64-bit word). Optimization
across layers allows a more efficient solution than solving the problem of memory error rates at
any single level.

An important phenomenon this memory example illustrates is time scales and filtering. While
device hardening and ECC effectively filter out errors at one rate, the system can afford longer

3



CCC: Visioning Proposal December 2008

time operations, such as scrubbing, at higher levels. If the lower levels filter errors sufficiently, the
higher level operations are invoked less frequently.

3 Vision
We can no longer assume computational elements will be perfectly and identically fabricated and
operate without transient upsets. While, in the previous example, we were able to show how multi-
level solutions have been useful in protected DRAMs, similar solutions for computation currently
do not exist. In part, the heterogeneous design of computing systems and their ability to transform
data makes posing simple solutions that do not rely on brute-force replication difficult. Nonetheless,
there are numerous hints that many of the high-level ideas can transfer.

Hardware organizations must be prepared for repair. Both RAM and hard disks expect
errors and employ microarchitectures and abstractions that allow repair. While RAM repair, such
as row and column sparing, occurs below the architectural level and is invisible to the software,
bad disk sectors in hard drives are visible to the operating system. In a similar manner, our com-
putational organizations must be prepared for errors. Mitigation of the errors will likely require
cooperation across the microarchitecture, architecture, and operating system.

Errors must be filtered at multiple levels. To use small devices, memory systems allow
individual memory bits to fail. The microarchitecture assists by correcting errors during memory
access. The operating system collaborates by scrubbing memory. To use small devices and low
energy for computation, we must similarly expect occasional errors in the computation. These
errors will need to be caught and corrected at higher levels in the system stack.

Multilevel trade-offs provide efficient solutions, generalizing the idea of hardware-software
trade-offs. With errors slipping through devices, higher levels must be prepared to detect and cor-
rect them. Similar to the way we distribute the function of a memory system across hardware (e.g.
TLB) and software (e.g. TLB and page miss handling), efficient solutions will carefully divide
functionality between the microarchitecture and system software. Suitable architectural interfaces
will be required and will benefit from compiler and application support.

Strategic redundancy improves solution efficiency. Information theory tells us how to pro-
vide shared redundancy across large blocks of data to avoid brute-force replication. Efficient com-
putational solutions will similarly avoid brute-force replication. For example, invariants and end-
to-end consistency checks on the computation may allow lightweight checks for errors.

Differential reliability enables more efficient solutions. DRAMs with ECC and row sparing
carefully exploit the fact that the ECC allows the core of the memory to be less reliable than the
periphery. This solution also exploits the ability to fabricate devices with different feature sizes
to assure stronger reliability. Computations can similarly employ a mix of larger, more-reliable
devices and smaller, less-reliable devices. Similarly, we can use higher voltages and currents to
make some circuits more reliable than others. Thereby, computations that have efficient checks
or are less sensitive to errors can be run on smaller, lower-energy devices. In this manner, high-
level information about application invariants or requirements drives microarchitectural decisions
around the deployment of circuits and devices with different characteristics.

Scalable solutions should allow adaptation to error rates and reliability. Scalability to
different error rates and different levels of protection is not demonstrated by the simple, traditional
DRAM example. However, information theory does tell us how to develop codes of different rates
to handle different needs, and it is easy to see how to add adaptability for memory systems (See

4



CCC: Visioning Proposal December 2008

Section 4.) With growing error rates and applications with differing needs for protection, we need
the engineering understanding of how to best provide that protection across the design space as well
as architectures and components that can be tuned in-system to varying environmental conditions.
Device wear suggests error

rates will change over time in a single component, further driving the need for in-system adap-
tation

To sum up, just as a multi-level cache memory system attempts to provide the density of a large
memory with the speed of small memory:
• A traditional, ECC-protected memory provides the reliability of large feature sizes with the

density of small memory cells.
• Multi-level computational designs can provide the reliability of large-feature and large-energy

devices with the density and energy consumption of small-feature, low-energy devices.

4 Adaptable Memory Systems
Multi-level solutions could be extended to make memory systems adaptive to changing environ-
ments and aging. High-level, periodic monitoring software can use low-level information, such as
ECC correction rates, to assess the system’s health in order to estimate upset rate

and system vulnerability. These checks may discover that (i) the system’s mitigation methods
are either too aggressive or not aggressive enough for the actual upset rate, (ii) specific modules or
pages have excessively high upset rates, or (iii) specific words have new permanent failures. Based
on this discovery, the high-level software can direct changes to the lower-level system configuration
to reduce vulnerability. For example, the system can (i) change the scrubbing rate or change the
ECC code rate to adapt to the upset rate, (ii) map out a particular memory page if a region of
memory is experiencing an excessively high upset rate, or (iii) replace a newly defective row with
a spare.

5 Resilient Computing Example
As an example of how multi-level reliability might be implemented in a computing device, consider
the CPU of a 2018-era computer that contains a memory hierarchy using the approaches described
earlier and a number of I/O devices. Assuming current CMOS trends continue, such a CPU might
have a die size of 1–2 cm2 and contain between sixteen and sixty-four cores of similar complexity
to current CPUs, a larger number of finer-grained execution units (e.g. GPUs, FPGA-like cells),
or a mix of execution unit granularities. This CPU might be designed with a peak clock rate of
6-8 GHz, although power and thermal limitations would prevent it from operating all of its cores
at their peak clock rates except in short bursts. Instead, the operating system will dynamically
adjust the supply voltages and clock frequencies of the cores, tuning their throughput to meet the
demands of the operating environment and the characteristics of the applications being executed
without overheating the CPU.

Such a chip would prepare for repair by incorporating hardware structures that allow cores,
ALUs, memory blocks, or other functional units to be disabled and isolated from the rest of the chip
if they develop permanent faults. Multi-level rollback support would be possible through instruc-
tion squashing at the microarchitectural level and hardware support for low-overhead checkpointing

5



CCC: Visioning Proposal December 2008

for larger rollback windows at the OS- and application-level.
The CPU would also support strategic redundancy in critical modules. Register files and on-

chip memories would employ ECC. The CPU would use light-weight detection mechanisms to
catch errors in computations, such as residue arithmetic, parity bits on instruction words, operation
sequence signatures, and a heartbeat timer to detect software “hangs.” These mechanisms will
detect and filter out the vast majority of transient errors and, in combination with test routines, will
be used to diagnose permanent errors.

Further, the CPU will cooperate across multiple levels with the OS and applications to exploit
differential reliability to make reliability/performance/power consumption trade-offs according
to the needs of the application. By default, the OS might enable the CPU’s error detection and
checkpointing hardware, assuming that the application does not contain any self checks, but is not
critical enough to merit redundant execution of each operation. Applications that can tolerate some
errors in their outputs, such as video playback, could inform the OS of this fact, allowing it to
disable some of the reliability mechanisms to reduce power consumption. Applications that embed
their own lightweight checks, such as ILP solvers that check the validity of the solution found,
could disable most or all of the error-checking hardware except during consistency checks, while
functional applications that do not modify their inputs or external state might choose to disable
checkpointing and re-execute from the beginning if an error occurs. Conversely, applications that
contain critical regions could request that the OS turn on redundant execution during those regions.
For example, an on-line banking application might run with “normal” reliability settings while the
user is checking balances and reviewing past statements, but turn on redundant execution during a
balance transfer transaction.

When the processor, OS, or application detect an error in a computation, they will use multi-
level schemes to diagnose and correct the error. The hardware records that an error has occurred,
either by incrementing a hardware counter or signaling an exception. The faulty operation is reis-
sued. If the operation completes correctly the second time, the faulty operation is logged as being
an unrepeatable error. If the operation fails twice in a row or too many times in a particular window
of time, the processor assumes that a permanent error has occurred and signals an exception to
the operating system. Finally, the operating system responds by performing a local diagnosis and
repair, migrating the computation to another core, reverting to its last checkpointed state, and/or
terminating the application. At higher levels, the application can report suspicion of an error to
the OS and request rollback and re-execution. The OS notices when the application is making
re-execution requests too frequently. This, too, can trigger diagnosis, repair, and migration.

In addition to these reactive diagnoses and migration, the OS will periodically migrate com-
putations off of each core and invoke test routines on the core to detect permanent errors. During
these tests, the OS may deliberately overstress the core by running it at accelerated clock rates in
order to determine whether aging effects are decreasing the core’s performance to the point where
it can no longer run safely at a reasonable level of performance or energy consumption. The results
of these tests, as well as tests performed when the processor is fabricated, will be stored by the
OS and used when making decisions about the operational clock frequency for each core and the
assignment of tasks to cores.

The hardware and the OS will adapt to the error rates seen in the system. The CPU might
include selectable ECC logic, allowing the system to configure different amounts of protection
against soft errors depending on the needs of the application. Similarly, the CPU might add logic
that allows groups of cores to check each other’s results when running critical computations that

6



CCC: Visioning Proposal December 2008

demand particularly high reliability. The operating system will monitor the error rate logs, calculate
the reliability of the system, and reconfigure the hardware to achieve a desired level of resilience. A
system located at sea level might well be able to operate with fewer reliability mechanisms enabled
than one located in Denver, Colorado, due to the greater rates of radiation-induced soft errors at
Denver’s altitude, for example. Systems that experience substantial variation in error rates, such
as airplane or spacecraft control systems, could extend this capability by incorporating radiation
detectors that allow them to respond more quickly to changes in soft error rates, avoiding the need
to operate under worst-case assumptions at all times.

In-field adaptation can also efficiently accommodate aging. As a part ages, it may exhibit
higher fault rates demanding more frequent checkpoints and more heavy use of resilience mech-
anisms; since each component ages differently, we do not penalize the robust components for a
fraction that age more quickly.

Overall, distributing reliability across the system stack provides both dependability and flexi-
bility by allowing the system to tune itself based on its needs.

6 Open Questions
An important goal of the study is to develop community consensus on the key questions that need to
be addressed in this area (i.e., can we agree upon the set of questions that, if answered, would make
a significant difference?). These questions should provide guidance for research and priorities for
funding. Following are our initial attempts to formulate the questions. The broad workshops and
discussions in the study will allow us to socialize, refine, focus, formulate, and prioritize these
questions as well as identify any additional, high-priority questions.

1. How do we best accommodate repair? (granularity, division of responsibility among layers,
visible interfaces)

2. What is the right level of filtering at each level of the hierarchy? (how do we characterize
and assess? how do we tune and validate?)

3. How do we organize, manage, and analyze layering for cooperative fault mitigation?

(a) What should new contracts and interfaces look like?
(b) What information is useful to reflect up the stack?
(c) What controls on lower levels should be exposed and how?
(d) What information is it useful for higher-levels to pass down?
(e) How do we evaluate and compose techniques across levels?
(f) How do we engineer and analyze adaptation and repair control loops across layers?

4. Can we establish a useful theory and collection of design patterns for lightweight checking?

(a) What computational classes are lightweight checkable (i.e., for what class of computa-
tions is it provably (asymptotically or a constant-factor) less expensive to check (deter-
ministically or probabilistically) the solution than to compute it? can we enlarge this
class by extending the output of the base computation so its results include a certificate
to assist checking? (e.g. Extended GCD [2]))

7



CCC: Visioning Proposal December 2008

(b) How do we express checks in computation and optimize their use?

5. What would a theory and framework for expressing and reasoning about differential reliabil-
ity look like?

(a) How do we express (identify, analyze) and exploit allowable noise (error rates) from
substrate for computation or piece of a computation?

(b) What is the value of reflecting/exposing errors to the application level and what is the
proper way to do so?

(c) How do we express the reliability needs of an application, or how can we analyze the
needs of subcomponents based on structure of the application?

6. Can a scalable theory and architectures that will allow adaptation to various upset rates and
system reliability targets be developed? The theory side might identify the minimum achiev-
able energy-delay-area-reliability surface as a function of upset rate; the architecture side
would develop systems that are efficiently scalable to different upset rates and reliability tar-
gets. Assessment of an architecture may include: (i) How close can it come to the theoretical
bounds? and (ii) Over what range of upsets and reliability targets does it scale?

7 Societal Impact
Economic: The growth of our economy and well being has been fueled by continually cheaper and
more powerful computations that enable greater automation and new services and products. This,
in turn, has been fueled by Moore’s Law scaling. Integrating reliability and variation management
into designs is essential to allowing us to continue to extract size, cost, and energy benefits from
scaled computations.

Energy: Energy consumption promises to be a limitation to our capabilities and our econ-
omy. Operating in a regime where small numbers of failures can be tolerated can allow significant
reductions in the amount of energy consumed by a computation.

Ultra-reliable Systems: Computation increases our infrastructural capabilities and our efficient
use of scarce resources. Unless we systematically address reliability issues, these systems will be
hit by the double-whammy of increasing device count and decreasing device reliability.

Harsh Environments: Automated computations expand our reach and survivability into harsh
environments, such as space, high altitude, or extreme temperatures. However, these environments
increase the upset and wear rates for devices, an effect which is further magnified as devices scale
down in size. To provide reliable computations in these critical roles in harsh environments, we
must be able to scale our reliability solutions to these more extreme environmental characteristics.
We must further be able to do so with modest incremental effort on top of mainstream designs.

Security: As more of our interactions are managed and enhanced by computer mediation, it
becomes increasingly critical that these systems be robust against deliberate subversion attempts. It
is a difficult task to guarantee that a system cannot be penetrated even when we assume the devices
and components work perfectly. Misbehaving devices violate key assumptions and create a myriad
of new attack vectors against our systems. For example, researchers have already identified ways
in which soft errors can be used to defeat cryptographic systems [15, 12] and software isolation
layers [5].

8



CCC: Visioning Proposal December 2008

Education: Flexibility and adaptability are one of the strengths of computing systems. Suc-
cessful solutions are regularly deployed into uses beyond those originally envisioned by the de-
signer. Between both the large fraction of computing systems that are employed in critical roles
and the potential for almost any system to be deployed into such a role, noise-tolerance and re-
liability management is a concern for all computer engineers; we must make sure that computer
engineering education evolves rapidly to prepare engineers for the new reality.

8 Proposed Activities
The goal of this proposal is to gather a community of widely-varied computer researchers to nurture
a vision for a multi-level approach to reliability. We will facilitate community crystallization and
refinement of the vision, generating a clear picture of the challenges and opportunities offered in
multi-level reliability approaches. To foster this community we pursue a two-tiered approach:

1. Three focused workshops of experts aimed at discussing and revising the questions that we
have presented and initiating cross-layer discussions.

2. A wiki to allow broad participation in between workshops for attendees and for the larger
computer research field.

By the end of the proposed effort we believe the community will sufficiently converge on the vision
that we can draft a call for proposals for a government-funded research program in the area of multi-
level resilience that we will present to program managers at the NSF and other agencies to solicit
support for this critical research area.

The first of the three workshops will focus on a discussion of the open questions as presented
in Section 6. During this workshop, we will present the vision for the multi-layer approach to
reliability and identify the key open questions, using our list as a starting point for discussion and
organization. We expect the broad participation and discussion to generate additional candidate
questions and refine the existing questions.

The breadth of topics makes it difficult to do justice to all of these issues in a single workshop.
To that end, the second and third workshops will be organized around distinct themes. The working
themes are:

• Workshop 2: exposure and cooperation at the level of the application, algorithm, program-
ming language, and compiler (Q4, Q5)

• Workshop 3: cross-layer information sharing and cross-layer optimization (Q1, Q2, Q3)

The core working group will tune the theme and content of these later workshops as necessary to
properly address emergent issues, concerns, and priorities that become apparent in the first work-
shop.

Three meetings also provide location and time diversity. All of the likely participants have busy
schedules and it will certainly be impossible to pick a single date when everyone can attend.

After the final workshop, we will draft the call for proposal with our core working group. The
primary output for this project is a draft solicitation for a program including:
• Identification of key questions to be addressed.

9



CCC: Visioning Proposal December 2008

• Guidance for key characteristics of research in this program (e.g. program-specific review
criteria)

Additional outputs will include Wikis from the visioning process and digest summaries of the
workshops.

9 Participation
We will use the Wiki to promote broader participation. To make sure we get the word out to the
right people in each community and know whom to invite, we are assembling a core working
group of 8–10 individuals with representation across the communities and industries. The core
working group will be involved in suggesting and recruiting participants for the early workshops,
reviewing Wiki submissions, selecting invited speakers for the workshops that come out of the Wiki
discussion, and reviewing and refining the output reports.

Person Affiliation Expertise
Sarita Adve UIUC Architectures and System Softwware
Todd Austin University of Michigan Architecture
Andrew Huang Chumby Industries, Inc. System Engineer
Ravi Iyer UIUC Reliable Distributed Systems
Subhasish Mitra Stanford University Fault Tolerance, Testing, Circuits, Architecture
Sani Nassif IBM CAD and Technology
John Savage Brown University Information and Computational Theory
David Walker Princeton University Programming Languages
Gary Swift Xilinx Device Physics, Radiation Effects

10 Timeline
Date Event
Nov. 2008 Core working group assembled
Jan. 2009 Wiki up, start soliciting contributions
Feb. 2009 Vision/Questions workshop (now: post-SELSE March 26-27)
Apr. 2009 Second workshop (high-level exposure) (perhaps move to June)
Jul. 2009 Third workshop (cross-layer)
Oct. 2009 Final report

11 Organizers

Person Affiliation Expertise
André DeHon University of Pennsylvania Architecture, CAD, Technology Impact
Heather Quinn Los Alamos National Laboratory Radiation Effects, Fault-Tolerance, Runtime
Nicholas Carter Intel Corporation Architecture, Technology Impact

10



CCC: Visioning Proposal December 2008

References
[1] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji, S. R. Nassif, E. J. Nowak,

D. J. Pearson, and N. J. Rohrer. High-performance CMOS variability in the 65-nm regime
and beyond. IBM Journal of Research and Development, 50(4/5):433–449, July/September
2006.

[2] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of
the ACM, 42(1):269–291, January 1995.

[3] Shekhar Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. IEEE Micro, 25(6):10–16, November–December 2005.

[4] O. Flament, J. Baggio, C. D’hose, G. Gasiot, and J.L. Leray. 14 MeV neutron-induced SEU
in SRAM devices. IEEE transactions on nuclear science, 51(5):2908 – 2911, 2004.

[5] Sudhakar Govindavajhala and Andrew W. Appel. Using memory errors to attack a virtual
machine. In Proceedings of the IEEE Symposium on Security and Privacy, 2003.

[6] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, and C. Dai. Impact of CMOS process
scaling and SOI on the soft error rates of logic processes. In Proceedings of Symposium on
VLSI, pages 73–74, 2001.

[7] J. Kim and L. Kish. Error rate in current-controlled logic processors with shot noise. Fluctu-
ation and Noise Letters, 4(1):83–86, 2004.

[8] Laszlo B. Kish. End of Moore’s law: Thermal (noise) death of integration in micro and nano
electronics. Physics Letters A, 305:144–149, 2002.

[9] Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and Steven K. Reinhardt. Cache
scrubbing in microprocessors: Myth or necessity? In Proceedings of the IEEE Pacific Rim
International Symposium on Dependable Computing, pages 37–42, 2004.

[10] E Normand. Single event effects in avionics. Transactions on Nuclear Science, 43(2):461–
474, 1996.

[11] Abdallah Saleh, Juan Serrano, and Janak Patel. Reliability of scrubbing recovery-techniques
for memory systems. IEEE Transactions on Reliability, 39(1):114–122, 1990.

[12] Adi Shamir. Research announcement: Microprocessor bugs can be security disasters. Avail-
able online at http://cryptome.org/bug-attack.htm, November 2007.

[13] Karl-Ulrich Stein. Noise-induced error rates as limiting factor for energy per operation in
digital ic’s. IEEE Journal of Solid State Circuits, 12(5):527–530, October 1977.

[14] J. A. Swanson. Physical versus logical coupling in memory systems. IBM Journal of Research
and Development, 4(3):305–310, July 1960.

[15] Jun Xu, Shuo Chen, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. An experimental study
of security vulnerabilities caused by errors. In Proceedings of International Conference on
Dependable Systems and Networks, pages 421–432, 2001.

11

http://cryptome.org/bug-attack.htm


CCC: Visioning Proposal December 2008

[16] James Ziegler and Helmut Puchner. SER – History, Trends and Challenges: A guide for
designing with Memory ICs. Cypress, 2004.

Contact E-Mail: andre@seas.upenn.edu Document release number: LA-UR-08-07016

andre@seas.upenn.edu

	Problem Statement
	Motivational multi-level example: DRAM
	Vision
	Adaptable Memory Systems
	Resilient Computing Example
	Open Questions
	Societal Impact
	Proposed Activities
	Participation
	Timeline
	Organizers

