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Rethinking Resilience
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The Future is:

• High variation
• Significant fault rates
• Continued feature size scaling
• Slower Vdd scaling
• Slower clock rate scaling

How do we use all the transistors we can build?

Resilience!
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Preaching to the Choir

T=0 Variation Increasing
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Technology Outlook

High Volume 
Manufacturing

2008 2010 2012 2014 2016 2018 2020 2022

Technology 
Node (nm)

45 32 22 16 11 8 6 4

Integration 
Capacity (BT)

8 16 32 64 128 256 512 1024

Delay Scaling >0.7                                ~1?
Energy Scaling ~0.5                                >0.5
Transistors Planar                            3G, FinFET
Variability High                                Extreme
ILD ~3                                   towards 2
RC Delay 1 1 1 1 1 1 1 1
Metal Layers 8-9 0.5 to 1 Layer per generation
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How Many Transistors Can I Build?

45nm 32nm 22nm 16nm 11nm

Density Limit

Constant Power 
Limit

Can build many more transistors
than you can toggle:

Overprovisioned
Hardware
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Power vs. Throughput
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Implications for Resilient Systems

• Excess hardware resources
– Can sacrifice some unit performance to reduce complexity
– Can afford to disable some working HW to reduce overhead

• Power is everything
– Analysis needs to consider entire cost of any HW for 

resilience
– Checkpoint/restore a great example of a place where it’s easy 

to count the wrong costs

• Range of system sizes increasing
– Want resilience mechanisms that scale from cell phone to 

supercomputer
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Strawman Resilient System

• Adaptive software diagnostics determine system 
state and aging

• Small set of hardware mechanisms to detect errors
• Reconfigure at coarse grain (ex: core)

– Finer-grained reconfig. only where it’s very cheap (e.g., 
cache line disable)

• Divide error analysis/recovery/reconfiguration 
between HW and SW
– Tune system for error rate that maximizes power efficiency
– Build cheapest set of HW mechanisms that allow that error 

rate
– Push everything else into SW
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