

Rethinking Resilience

The Future is:

- High variation
- Significant fault rates
- Continued feature size scaling
- Slower Vdd scaling
- Slower clock rate scaling

How do we use all the transistors we can build? Resilience!

Preaching to the Choir

• Fabrication variation, aging, soft error rate *per chip* all getting worse with scaling

Technology Outlook

High Volume Manufacturing	2008	2010	2012	2014	2016	2018	2020	2022
Technology Node (nm)	45	32	22	16	11	8	6	4
Integration Capacity (BT)	8	16	32	64	128	256	512	1024
Delay Scaling	>0.7 ~1?							
Energy Scaling	~0.5 >0.5							
Transistors	Planar 3G, FinFET							
Variability	High Extreme							
ILD	~3 towards 2							
RC Delay	1	1	1	1	1	1	1	1
Metal Layers	8-9	0.5 to 1 Layer per generation						

How Many Transistors Can I Build?

Operate at Average-Case via Resilience (not Worst-Case)

Source: K. Bowman, et al., *ISSCC*, 2008.

Power vs. Throughput

Source: K. Bowman, et al., JSSC, 2009.

Implications for Resilient Systems

- Excess hardware resources
 - Can sacrifice some unit performance to reduce complexity
 - Can afford to disable some working HW to reduce overhead
- Power is everything
 - Analysis needs to consider entire cost of any HW for resilience
 - Checkpoint/restore a great example of a place where it's easy to count the wrong costs
- Range of system sizes increasing
 - Want resilience mechanisms that scale from cell phone to supercomputer

Strawman Resilient System

- Adaptive software diagnostics determine system state and aging
- <u>Small</u> set of hardware mechanisms to detect errors
- Reconfigure at coarse grain (ex: core)
 - Finer-grained reconfig. only where it's very cheap (e.g., cache line disable)
- Divide error analysis/recovery/reconfiguration between HW and SW
 - Tune system for error rate that maximizes power efficiency
 - Build cheapest set of HW mechanisms that allow that error rate
 - Push everything else into SW

