Question 3

Sarita Adve
John Savage
Heather Quinn

Advantages of Multilevel Solutions

- Provides opportunity global optimization.
- Decomposition enables repair, adaptation, and flexibility.
- Allows simultaneous optimization of multiple cost functions and objectives, e.g. QoS vs power vs reliability.
- Enables adaptation to environmental changes.
- Decomposition into layers provides opportunities for postdeployment changes.
 - A software patch easier to deploy than a hardware patch.

Disadvantages of Multilevel Solutions

- Optimization across levels often implies cooperation across corporations, which is problematic.
- Optimization easy to say, difficult to do.
- Testing and validation are far more complex.
- Difficult to strike and maintain layer contracts.
- Is part of the contract a FIT rate?
- What happens when people break their contract?
- Are duties blurred if contacts are blurred?

Where are Multilevel Solutions Viable?

Does it work for all situations?

Are there cost differences for different layers?

How is Multilevel Implemented?

- Must formalize layer interfaces.
 - Parameterized fault models are needed for each layer
 - Must specify how exceptions are handled.
 - Must specify what data passes bidirectionally between layers.
 - Schedule the right part of the application on the appropriately reliable h/w
 - How are legacy systems handled?
- Can we leverage control theory to help us?
 - Computer systems are non-linear but classical control theory deals with linear systems.

How is Multilevel Implemented?

- Implementation of fault analysis, detection and recovery needed for each layer.
 - Classify hardware into types to ease to detection and recovery.
 - Easier to detect and respond to hard failures
 - Consider incorporating reliability monitors, e,g.
 - Error rate reporting from ECC
 - Local temperature reporting
- Timeliness of response
 - Responses should be timely and precise detection and diagnosis
 - Depends on level, components, and fault type and severity.

How is Multilevel Implemented?

- Metrics
 - Good metrics to make good models.
 - Metrics are layer dependent.
 - Roadmap metric criteria may help drive research.
 - Reliability is important at all levels.
- How is error in a system defined?
- Imprecise vs. unreliable computation
 - High error rate may be tolerable for some applications
 - Computation must not halt
- Implementation Approaches
 - Transaction-based hardware facilitates checkpointing.
 - Can layers be short-circuited?
 - Predictive vs real time error correction?