Repair and Recovery

e Repair: How do we eliminate faults that won’t clear up over time?
e Recovery: How do we correct any corrupted computation?



Repair and Recovery

e Repair: How do we eliminate faults that won’t clear up over time?
— Granularity
— Design for repair
— Other issues
— Interfaces

e Recovery: How do we correct any corrupted computation?



Granularity of Repair

Gate, FF, microarchitecture, core?
Tradeoff complexity, overhead, testability/validation

— E.g., Core level easier to implement, but higher overhead(?)
vs. microarchitecture level repair may need more testing

— Is gate level repair ridiculous?

e Logic devices minimally designed — Vdd, delay knobs

e Vs. analog designed with many knobs

 Technologies where logic devices have different knobs???
Related to the fault model
Interaction with detection, diagnosis, testing

— Must isolate fault to repair granularity, determine what repair needed

What is the sweet spot?



Design for Repair

Graceful degradation vs. cold spares

What are surplus resources, how to allocate for repair (wires in fpgas)
One of a kind components vs. inherent redundancy

Testing, self-check, isolation

Depends on application and organization

How do we connect parts into systems that do repair?



Other Issues

Value-add with repair
— Use spares for upgrades

Business model — currently sell based on end of life performance
— Can we sell part at best case?

* Big servers —s/w licenses based on performance of machine
(vs. laptops)

— Getting the best from your system
Who is responsible for repair

— Firmware? Multilayer?

— Interfaces (separate slide)
Control timeframe of degradation — delay/control repair?
Connection with adaptation



Interfaces

What hooks do we need to enable repair?
— Need some standards
— Accommodate application-specific needs
— Independent of OS

Think about the problem hierarchically

— Lower level tells upper level what its repair features are, impact
of those features

— Higher level decides how to use them based on application
Each layer should decide how much detail it needs
— API should have two interfaces:

e Alarm interface: higher layer tells the lower layer what the
alarm level is

e Detailed interface: if or when needed
Security



Recovery
* Acceptable layer for recovery depends on fault
rate/model and application
e Availability important
e |/Oissues



	Repair and Recovery
	Repair and Recovery
	Granularity of Repair
	Design for Repair
	Other Issues
	Interfaces
	Recovery

