
Repair and Recovery
• Repair: How do we eliminate faults that won’t clear up over time?

• Recovery: How do we correct any corrupted computation?

Repair and Recovery
• Repair: How do we eliminate faults that won’t clear up over time?

– Granularity

– Design for repair

– Other issues

– Interfaces

• Recovery: How do we correct any corrupted computation?

Granularity of Repair
• Gate, FF, microarchitecture, core?

• Tradeoff complexity, overhead, testability/validation

– E.g., Core level easier to implement, but higher overhead(?)
vs. microarchitecture level repair may need more testing

– Is gate level repair ridiculous?

• Logic devices minimally designed – Vdd, delay knobs

• Vs. analog designed with many knobs

• Technologies where logic devices have different knobs???

• Related to the fault model

• Interaction with detection, diagnosis, testing
– Must isolate fault to repair granularity, determine what repair needed

• What is the sweet spot?

Design for Repair

• Graceful degradation vs. cold spares

• What are surplus resources, how to allocate for repair (wires in fpgas)

• One of a kind components vs. inherent redundancy

• Testing, self-check, isolation

• Depends on application and organization

• How do we connect parts into systems that do repair?

Other Issues
• Value-add with repair

– Use spares for upgrades
• Business model – currently sell based on end of life performance

– Can we sell part at best case?
• Big servers – s/w licenses based on performance of machine

(vs. laptops)
– Getting the best from your system

• Who is responsible for repair
– Firmware? Multilayer?
– Interfaces (separate slide)

• Control timeframe of degradation – delay/control repair?
• Connection with adaptation

Interfaces
• What hooks do we need to enable repair?

– Need some standards
– Accommodate application-specific needs
– Independent of OS

• Think about the problem hierarchically
– Lower level tells upper level what its repair features are, impact

of those features
– Higher level decides how to use them based on application

• Each layer should decide how much detail it needs
– API should have two interfaces:

• Alarm interface: higher layer tells the lower layer what the
alarm level is

• Detailed interface: if or when needed
• Security

Recovery
• Acceptable layer for recovery depends on fault

rate/model and application

• Availability important

• I/O issues

	Repair and Recovery
	Repair and Recovery
	Granularity of Repair
	Design for Repair
	Other Issues
	Interfaces
	Recovery

